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Percolation and Cluster Distribution. III.
Algorithms for the Site~-Bond Problem
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Algorithms for estimating the percolation probabilities and cluster size
distribution are given in the framework of a Monte Carlo simulation for
disordered lattices for the generalized site-bond problem. The site-bond
approach is useful when a percolation process cannot be exclusively de-
scribed in the context of pure site or pure bond percolation. An extended
multiple labeling technique (ECMLT) is introduced for the generalized
problem. The ECMLT is applied to the site~bond percolation problem
for square and triangular lattices. Numerical data are given for lattices
containing up to 16 million sites. An application to polymer gelation
is suggested.

KEY WORDS: Percolation zone; Monte Carlo; site-bond; tree; UNION
operation; FIND operation.

1. INTRODUCTION

The concept of percolation has been useful in describing a variety of physical,
chemical, and biological phenomena.*~® Two distinct types of percolation
processes are recognized. These are bond percolation and site percolation.
Permeation of fluids through porous media® and gel formation by polymers
via cross-linking® can be explained in terms of the bond percolation theory,®
whereas crystal phenomena, such as spontaneous magnetization of dilute
ferromagnets,® diffusion in binary alloys,”® and exciton percolation in
molecular crystals,®®1? are described within the framework of site percolation.
Site and bond percolation processes have both been suggested for electrical
conductivity models of disordered materials.t1-1%

The calculation of real lattice percolation parameters, such as percolation
threshold, percolation probabilities, and cluster size distribution, proved not
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to be a trivial task.®%'® Percolation problems of tree lattices have been
solved analytically,*™ so that exact results are available for these lattices. Real
lattices contain clusters with cyclic components®® which are absent from the
tree lattices. The existence of irregular ring structures in real lattices precludes
an analytical solution for the percolation problems of real lattices.

Real lattices are approached by two basically different methods. (a)
Series expansion. This method is based on series expansion in terms of site
or bond probabilities™® for clusters containing up to 20 sites. The results of
the series expansion method can be extrapolated to determine the critical
percolation threshold. (b) Monte Carlo simulation. In this method a finite
crystal is simulated on the computer. The cluster size distribution, the percola-
tion probability, and the percolation threshold (critical site or bond occupa-
tion probabilities) are estimated 2®—29 for the simulated lattice.

Both the series expansion method and the Monte Carlo simulation have
shortcomings. The series expansion method is not applicable for large
clusters, because of the rapid increase in the number of geometrical cluster
shapes as the cluster size increases. The series expansion method is used for
short-range interactions and for regular lattices. An extension of the method
to irregular structures and long-range interactions would not be a simple task
and probably not practical. The Monte Carlo simulation, on the other hand,
is relatively easy to apply to regular lattice structures, and can be also used
on irregular structures which are described in terms of the continuous per-
colation theory.®®%:27 The Monte Carlo simulation is applicable on either
side of the percolation threshold. The major deficiency of the Monte Carlo
approach is related to the very nature of the procedure, which can only
provide an estimate for the percolation probabilities and the cluster size
distribution rather than actually calculate them. Increasing the sample size
may improve the accuracy and the statistics of the simulation results, but
may also be very costly in terms of computer time and space. A careful
construction of efficient computer algorithms is of prime importance for
treating large samples.?>2® An iil-chosen algorithm may be impractical for
application to a large system because of inadequate time and space
complexities.®

In this paper we shall introduce algorithms for the generalized site-bond
problem.@%-3% This generalization is useful when a percolation process cannot
be exclusively described as a pure bond or a pure site percolation process.©?
The site-bond problem can be effectively treated by utilizing an extension of
the cluster multiple labeling technique introduced in a recent paper®® (I).
The extended cluster multiple labeling technique (ECMLT) is applied in
conjunction with a Monte Carlo simulation of a random lattice. The ECMLT
determines the cluster size distribution from which the pertinent percolation
parameters can be estimated.>
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Dean®® proposed a scheme where the bond problem for a crystal
structure could be transformed to a site problem of another crystal structure
(usually more complex). This seemed to be a convenient method, as it
appeared that it would be simpler to simulate the site percolation problem
rather than the bond problem on a computer. The ECMLT can handle the
site, the bond, and the site-bond percolation problems on the same basis.

In Section 2 some definitions pertaining to cluster formation and
percolation phenomena are given. The basic features of the ECMLT are
described in Section 3. The algorithms pertaining to the ECMLT are outlined
in Section 4, and a simple example illustrating the implementation and
graph-theoretical representation of the algorithms is presented in Section 5.
Numerical data are given in Section 6 for the site-bond problem for square
and triangular lattices. These data are given for large simulated lattices con-
taining up to 16 million sites, as it has been observed®® (paper I1) that the
fluctuations of the Monte Carlo result are relatively large for two-dimensional
lattices.®?

2. THE SITE, THE BOND, AND THE
SITE-BOND PROBLEMS

Since the site-bond problem has been vaguely addressed in the literature,
it would be instructive to review the problem. For this purpose let us consider
a planar square lattice with nearest neighbor interactions only. The site
percolation problem for this lattice is that sites on the lattice are occupied
with a probability ¢ (or unoccupied with a probability 1 — ¢). In the site
case once two adjacent sites are occupied, we assume that there exists a bond
connecting these sites; hence, they are members of the same cluster.

In the bond percolation problem we assume that all sites are occupied;
however, the connecting bond is either open with a probability p or blocked
with a probability 1 — p. Thus, the formation of clusters in the bond case
depends on the existence (or absence) of bonds connecting sites.

The site-bond problem is a logical extension of the pure bond and the
pure site problems. In the site-bond case for a square lattice a site is occupied
with a probability ¢ and is connected to its occupied neighbors with a bond
probability p. The square lattice is isotropic, so all bonds are equivalent. If
we were concerned with a rectangular lattice, we would have two bond
probability parameters p{a,} and p{a,} corresponding to the a, and a,
primitive lattice vectors.

This reasoning could be extended to more complex lattices and to neigh-
bors other than nearest neighbors. In the site-bond problem the percolation
probability P is

P = P(Cs p{Rl}’ P{Rz},,P{Rh}) (1)
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where p{R,} are the bond probabilities that two sites S; and S; separated by a
vector R, = S; — S; are connected. The pure site and the pure bond per-
colations can be given as limiting cases of Eq. (1). The site percolation
probability is now given by

P = P(C, p{Rl} = la p{RZ} = 9"'9P{Rh} = 1) (2)
and the bond percolation probability is given by
P = P(c = 1, p{Ry}, p{Ro},..., p{Ry)) ©)

Equation (1) defines a percolation zone in an (A + 1)-dimensional space. This
zone is bounded by the critical percolation surface P,, where

Ps(ca p{Rl}, p{R2}7"'9 p{Rh}) =0 (4)

The critical percolation surface shrinks to a single point for the special cases
of the site and the bond (with a single p parameter) problems.

3. THE EXTENDED CLUSTER MULTIPLE
LABELING TECHNIQUE

The extended cluster multiple labeling technique shares many common
features with its predecessor the cluster multiple labeling technique, which
was described in 1.9® Thus, this discussion will mainly be focused on the
special characteristics of the ECMLT. The goals of the ECMLT are to classify
clusters according to their sizes and to determine the cluster size distributions
for the site-bond problem. A simulated crystal is considered for which the
site occupation probability is ¢ and the bond connectivity probabilities are
PR, p{R},..., p{R,}. A site S; in the crystal and bonds originating from this
site are assigned random numbers ¢; and f§;;, respectively, where 0 < o; < 1
and 0 < B;; < 1. The number of j;; assigned to a site S, is equal to the number
of connecting bonds extending from S, to sites S;. These S, sites are defined
as neighbors of S;. It should be noted that 8;; = ;. Crystal sites are inspected
sequentially to determine the cluster classification of the sites. If o; > ¢, site
S, is vacant, and L(¢) is set to 0, where L is the site occupation vector. When
g; < ¢, site S; is occupied, and L(7) is assigned a cluster label m,*, where «
is a symbolic name for the cluster containing S;. A cluster « may be assigned
several cluster labels. These are given as a set of natural numbers:

{ml‘", m2“,..., ms“,..., m,“,...} (5)

In this set only one number is regarded as the proper cluster label, which we
shall designate as m,®. This is the smallest number of set (5). The following
set of integers provides the connections between the m,* labels:

{N(m,%), N(my®),..., N(m®),..., Nim®),...} (6)



Percolation and Cluster Distribution. IlI 587

In (6), N(m,®) is the only positive integer member of the set, and denotes the
number of occupied sites belonging to the « cluster. The remaining members
of (6) are negative integers, providing links between the other m,® labels and
the proper label my*. The m;” labels are related to the m,* label by

g = = N(= V(- = N(= Non©)-) ™

The assignment of a cluster label to an occupied site S; depends on the
cluster assignments of its previously labeled neighbors S,. The possibilities
for the cluster label assignment for site S, are as follows:

(a) If the following inequalities hold for all the previously labeled
neighbor sites S;

By >plSi—S} or  L(j)=0 ®)

then a new cluster label m/* is assigned to site S; and also N(m,*) = 1 and
L(i) = m/* are set.

(b) If the following inequalities hold for some or all previously labeled
neighbor sites S,

L) >0 and By <p{Si— S} (€)

then sites S; that obey inequalities (9) and site S; are members of the same
cluster. Let us assume now that site S; links g distinct fragments, where each
fragment is denoted by a different proper cluster label m,’. Also, a cluster
fragment « has the smallest proper cluster label of the g cluster fragments.
This proper label is m,*, so L(i) is set L(i) = m,*. Now N(m,*) would denote
the total number of sites in the linked cluster. The other ¢ — 1 of the N(m,")
that correspond to the ¢ — 1 cluster fragments are reset to N(m,") = —m.
It should be noted that the readjustments of the N’s are temporary and that
only after the entire crystal is scanned and labeled can the cluster sizes be
determined from the positive members of the N set.

The probability P, that a site is occupied and belongs to a cluster of size
n given for a set of parameters ¢, p{R;}, p{Rs},..., p{R,} can be estimated from

P, = in|T (10)

where i, denotes the number of clusters of size » and T is the total number
of sites in the simulated lattice. The percolation probability (1) can be deter-
mined from Eq. (10) for n = ny,,,, where n,,,, denotes the size of the largest
cluster. The evaluation of the percolation probability P is performed within
the percolation zone. The critical percolation surface (4) can be determined
for the simulated lattice by extending the I/, criterion introduced in 1® for
the site problem to the general site-bond problem.
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4. THE ALGORITHMS

The multiple labeling process described in Section 3 can conveniently
be presented in terms of graph theory. Each cluster label set (5) can be
represented by a tree graph®® (see Fig. 5). The labels are represented by the
tree vertices, and the cluster proper label m® is denoted by the root of the tree.
The length of the path from a given vertex to the root is equal to the number
of edges connecting the vertex to the root.

The algorithms to be given in this section involve the following pro-
cedures: (a) generation of a random crystal; (b) UNION operations on
disjoint sets [labeled sets (5)]; and (¢) FIND operations, to determine the
proper label (root) of a given labeled site.

UNION-FIND algorithms analogous to the ones presented here have
been proposed for data set processing.®* Specifically, UNION-FIND
algorithms have been applied to perform ‘‘equivalencing” operations®® on
identifiers in computer languages such as Assembler and Fortran.

For the sake of clarity and compactness, we have chosen to present the
algorithms developed for the ECMLT in Pigin Algol format.®® The lattice
generation and labeling process is illustrated in Fig. 1. A vector L, whose
elements represent the lattice sites, provides the data base for the problem.
Line 1 of Fig. 1 specifies that lattice sites are scanned sequentially from the
first site to the last site. If a site is not occupied (line 2) L[SITE] is set to 0;
otherwise, the labeling process of L[SITE] begins, and all previously neigh-
boring labeled sites are searched (line 3). Forward neighboring sites are not
searched, as they have not yet been created or labeled. Thus, for nearest
neighbors in square and triangular lattices, two and three neighbors are
scanned, respectively. It should be noted that a simple relationship exists
between the index SITE and the indices NEIGHBOR of L because of the
translational symmetry of regular lattices. Line 4 of Fig. 1 corresponds to the
conditional expressions given by (9). If SITE and NEIGHBOR are connected,
then routine CLASSIFY is envoked to determine the proper label
NEIGHBOR__LABEL of LINEIGHBOR] (line 5). Initially, the parameter
LABEL is determined by the proper label of the first encountered labeled
L[NEIGHBOR]. If thereis more than one occupied neighboring site,a UNION
operation is performed on the labeled sets, provided that the roots of the
neighboring sites are different from LABEL (line 6). In line 7, LABEL
becomes the combined root of LABEL and NEIGHBOR_LABEL trees
if LABEL < NEIGHBOR__LABEL; otherwise, LABEL is set to
NEIGHBOR__LABEL. If no neighboring sites are occupied (line 8), then
a new label is generated by the variabie COUNT. L[SITE] is labeled with
LABEL (line 9), and N[LABEL] is incremented by 1 as the cluster size
increases when L[SITE] is labeled.
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LATTICE GENERATION AND LABELING ROUTINE

-BEGIN
COUNT == 0;
1. FOR SITE =~ FIRST UNTIL LAST DO
2. IF SRAND[SITE] »c THEN L[SITE] =0
ELSE
FBEGIN
LABEL == 0;
3. FOR all previously labeled neighbors of SITE DO
4. IF L[NEIGHBOR]) 0 AND BRAND[SITE,NEIGHBOR]K p THEN
rBEGIN
5. CLASSIFY (L [NEIGHBOR] ,NEIGHBOR_LABEL) ;
IF LABEL =0 THEN LABEL% NEIGHBOR LABEL;
6. IF NEIGHBOR LABEL # LABEL THEN
WITHOUT LOSS OF GENERALITY assume
LABEL { NEIGHBOR LABEL OTHERWISE interchange
the role of LABEL with NEIGHBOR LABEL
BEGIN
7. N[LABEL] < N[LABEL] + N[NEIGHBOR LABEL];
N[NEIGHBOR LABEL] e~ -LABEL;
NEIGHBOR_LABEL “= LABEL;
END
LEND
8. IF LABEL = 0 THEN
~BEGIN
COUNT = COUNT + 1;
LABEL < COUNT;
N{LABEL) - 0;
LEND
9. L{SITE}~e— LABEL;
N[LABEL) @~ N[LABEL] + 1;
LEND
LEND

Fig. 1. Lattice generation and labeling routine for the site~bond case. The vector
SRAND and the matrix BRAND correspond to the site and bond random number sets,
respectively [see (8) and (9)]. ¢ and p are the site and bond occupation probabilities as
defined in Section 2. L is the lattice vector, where the elements of L denote the lattice
sites. The NV vector is defined by (6).

The lattice generation and site labeling algorithm given in Fig 1 can be
applied to the pure bond and the pure site problems. This is accomplished by
setting ¢ = 1 (line 2) and p = 1 for all neighbors (line 4) for the bond and site
problems, respectively.

The procedure CLASSIFY,?® which represents a FIND algorithm,®%
is displayed in Fig. 2. The parameter M (line 1) is a site label, whereas ROOT
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DETERMINATION OF THE PROPER CLUSTER LABEL (ROOT)

ROUTINE
1. PROCEDURE CLASSIFY (M,ROOT) :
FBEGIN
ROOT == M;
2. |1r w[RooT] { 0 THEN
~BEGIN
| ROOT @ -N[ROOT] ;
3. 1F N(rooT] {0 THEN
BEGIN
4. REPEAT ROOT =~ -N[ROOT] UNTIL N[ROOT] ) 0;
5. N[M] @ -ROOT;
END
LEND
LEND

Fig. 2. Procedure CLASSIFY ©@® determines the proper label ROOT of a given site
label M. The N vector is defined by (6).

represents the proper label for that site. The procedure initially investigates
the tree vertex corresponding to M (line 2). If the condition given in line 2 is
true, then M is the ROOT ; otherwise, the procedure moves to a higher vertex
(line 3). The search for the root continues until the ROOT is found (line 4).
Line 5 denotes a partial path compression for M, when the path length from
M to ROOT is greater than one edge. Following the path compression, M is
attached directly to ROOT through a single edge. The reason for performing
path compression on the tree vertices is to speed up CLASSIFY for successive
encounters with the label M.

The pertinent feature of the ECMLT and the algorithms associated with
it is that only a single scan of the crystal is required for a given set of param-
eters ¢, p{Ry},..., P{R;}. As crystal scanning is performed sequentially, the
random number sets SRANDI[SITE] and BRAND[SITE,NEIGHBOR] need
not be stored in computer memory; they are generated as a particular site is
inspected and labeled. Furthermore, only a small fraction of the elements
of the L vector has to be concurrently stored in computer memory.

The algorithms given in Figs. 1 and 2 provide the basic approach to the
ECMLT. However, there is still room for improvements in terms of computer
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space and time. This can be achieved, for example, by introducing the
following modifications in the algorithms:

(a) Cluster labels can be recycled®® because the labeling process
involves only a single scan of the lattice. As the scanning progresses, many
clusters would have been completely scanned and their labels could be reused.
This recycling process of labels would lead to a reduction in the size of the
vector N.

(b) Time could be saved for a sequence of simulations, where each
simulation run? would correspond to an increased value of ¢ (while the p
parameters are held constant). Here, the entire vectors L and N would be
saved for successive runs. In each successive simulation run, when ¢ is
incremented by D¢ > 0 to ¢ + Dc, only DeT sites would be labeled, as
opposed to (¢ + Dc)T sites in the original algorithm. In this approach all
neighbors of a given site are searched in each run (except for the first run),
because all neighbors might have been labeled in previous runs. The approach
suggested here is especially useful for the determination of the critical percola-
tion surface (4) when series of simulations for small increments in ¢ are called
for.

The limiting factor for the above modifications is that they cannot be
applied simultaneously. In a multiscan approach labels cannot be recycled.
Thus, by saving time, computer space is lost.

5. GRAPH-THEORETICAL REPRESENTATION OF THE
LABELED SETS

As indicated in previous sections, a graph-theoretical approach can
provide a convenient representation for the labeled sets (5). This approach is
illustrated here by following a simple example. We shall consider a square
lattice shown in Fig. 3. The lattice contains 29 x 29 sites and is occupied
with probabilities ¢ = 0.57 and p = 1 (site case®®). We shall focus our atten-
tion now on a single cluster which is encountered for the first time during the
lattice scan at the site denoted by a circle in Fig. 3. This site is given a proper
label 47, as shown in Fig. 4. Whenever sites with proper labels other than 47
encounter a site belonging to the 47 cluster, a UNION operation is performed.
The growth of the 47 cluster through UNION operations on directed trees
is displayed in Fig. 5. In phase (c) of the growth, a path compression opera-
tion is performed on the label 63. This label is now attached directly to the
root, as illustrated in phase (d).

2 A simulation run is a run for which the cluster size distribution is determined for a
single set of ¢ and p parameters.
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Fig. 5. Graph-theoretical representation for the labeled sets corresponding to the cluster
denoted by the proper label 47 in Fig. 4. (Note that edges are entering the roots but none
are pointing out.) The union of the trees is denoted by the dashed lines.

By inspecting the various phases of the growth of the 47 tree in Fig. 5,
it can be observed that the rightmost vertices, as well as the root, participate
actively in the UNION operations. The reason for the inactivity of the other
labels can be attributed to the application of a single scanning sequential
process. This feature of the labeling process permits the recycling of inactive
labels even if the clusters to which they belong are not completely scanned.

6. NUMERICAL RESULTS

The algorithms given in this paper were applied to square and triangular
lattices. Numerical data will be given for these structures.

In the first example a square lattice is studied for which only four nearest
sites are considered to be neighbors. The critical percolation curve Pc, p) = 0
of the square lattice is determined for various values of ¢ and p, where p
denotes the bond probability of the four equivalent neighbors. Results for a
lattice containing 100 x 100 sites are displayed in Figs. 6 and 7. In Fig. 6
the percolation probability P is given as function of ¢ for some values of
p- The percolation zone bounded by the critical percolation curve (4) is
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Fig. 6. Percolation probability P vs. ¢ for

some values of p for a square lattice
containing 100 x 100 sites, with free
¢ ) " boundaries.

shown in Fig. 7. It should be noted that for a lattice of a given size and
structure the same site and bond random number sets are used for all runs
in order to minimize fluctuations. The waviness of the critical percolation
curve can be attributed to the small lattice studied in this example. We have
found @Y 1.5% variations in the percolation threshold values for the site
problem of 100 x 100 site lattices.

The change in the percolation threshold in the transition from a tri-
angular lattice topology to a square lattice topology is given in Fig. 8. In this
example two bonds of the triangular lattice are assigned a varying bond
probability p, where p is varied from 1 to 0 corresponding to the transition
from triangular to square lattice. As lattices containing 2000 x 2000 sites are
considered, the fluctuations are much smaller than in the previous example.
Here the labels are recycled to reduce the storage requirements. The triangular
to square lattice transition seems to follow a straight line, as can be observed
from Fig. 8.

The transition from a triangular lattice topology to a square lattice
topology is further illustrated in Table I, where data on the cluster size
distribution are given for some values of ¢ and p in the vicinity of the critical
percolation curve. In Table II the cluster size distribution is given for the site
problem of large triangular and square lattices. The pertinent feature of these
distributions is that a number of large and intermediate clusters exist in the
vicinity of the critical percolation curve. The CPU (central processor unit)
time for the 4,000,000-site and 16,000,000-site lattices is approximately 10
and 40 sec, respectively. We ran all the simulations on the University of
Michigan Ahmdal 470 computer.
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for a square lattice containing 100 x 100
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7. DISCUSSION

In I and also in Section 6 of this paper, the efficiency of the multiple
labeling process has been demonstrated. It was shown that the CPU time
required to perform a simulation run was essentially linear in the number of
lattice sites.®® Introducing bond probabilities does not alter the picture
significantly, as the number of algorithm instructions associated with bonds
is proportional to the lattice size. Since for each run only a single scan of the

0.60

PERCOLATION ZONE

0.55H

0.50

1 | I
0 0.25 050 0.75 [Xelel

P

Fig. 8. Critical percolation curve Py(c, p) = 0 for a triangular to square lattice transition.
Here p denotesthe bond probability for fwo bonds of the triangular crystal. Free boundaries
were used.
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lattice is performed, the contribution to the time complexity® of the bond in-
structions is linear in the size of the problem. The only nonlinearity associated
with the algorithms is related to procedure CLASSIFY (see Section 5).

A useful feature of the ECMLT is the flexibility of the method. Although
only regular lattices are considered in this paper, it is possible to extend the
method quite readily to irregular structures encountered in continuous
percolation processes.28-27:8 A variety of data bases can be used in con-
junction with the ECMLT ; however, costly linked lists would not be required
in most cases.

In our introductory remarks we emphasized the problems inherent in
simulating large lattices. A problem of a different nature requiring further
investigation is that of the random number generator associated with the
Monte Carlo Simulation. We have used a congruential generator of the IBM
RANDU type; however, it has been suggested ™ that pseudo-random-num-
ber sets based on congruential generators suffer from various correlations
and fail to satisfy some statistical tests for randomness.®*® It is not known
to what extent the faults in the generators affect the outcome of the percola-
tion simulations. It would be useful to apply other generators for the Monte
Carlo simulations in order to establish whether the results depend on the type
of generator used. Feedback shift register generators®® might be suitable
candidates for such a test.

This paper has been devoted mainly to the description of percolation
algorithms; however, it is instructive to review a situation where the site-bond
algorithm could be applied for polymer gelation. Here we consider the
copolymerization of two types of monomeric units A and B. In this model,
¢ corresponds to the concentration of type A monomer, while the p param-
eters correspond to the fraction of functional groups reacted®®*¥ in the
condensation reaction. It would be necessary to specify a set of p parameters
p(A, A), p(B, B), and p(A, B), corresponding to A-A, B-B, and A-B bonds,
respectively. An interesting limiting case arises by setting p(A, A) = 0 and
p(B, B) = 0. This limiting case may apply to immunization reactions between
antibodies and antigens.“?-*® It should be noted that the algorithms given here
should be modified for the copolymerization problem because copolymers
contain clusters of both A and B species.®
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